
tructural equation models are a family of multivariate
statistical models that make it possible to estimate the
effects and relations between multiple variables.

Structural equation models emerged in response to the need
for greater flexibility in regression models. They are less
restrictive than regression models, since they permit the
inclusion of measurement errors in both criterion
(dependent) and predictor (independent) variables. They
might be thought of as several factor analysis models that
permit direct and indirect effects between factors.
Mathematically, these models are more complex to

estimate than other multivariate models such as those of
Linear Regression and Exploratory Factor Analysis.
Hence, they were not widely used until 1973, when the
LISREL (Linear Structural Relations; Jöreskog, 1973)
analysis software appeared. LISREL, on being refined,
gave way to LISREL VI (Jöreskog & Sörbom, 1986), which
offered greater variety of estimation methods. EQS (an
abbreviation of “Equations”; Bentler, 1985) is the other
package traditionally used for this type of analysis.

Today, other estimation software programs are also
available running in graphical environments, such as
AMOS (Analysis of Moment Structures; Arbuckle, 1997).
The influence of estimation software has been so
determinant in the development of structural equation
models that they are often called LISREL models. In the
international literature they are generally referred to by
their initials, as SEM.
The great advantage of these types of model is that they

allow us to propose the type and direction of the
relationships expected to be found between the different
variables they contain, to then proceed to estimate the
parameters specified by the relationships proposed at a
theoretical level. For this reason they are also called
confirmatory models, since the primary interest is to
“confirm”, through analysis of the sample, the
relationships proposed from the explanatory theory
chosen to be used as a reference.
As it can be seen in the following example, the

theoretical specification of the model permits the proposal
of causal structures between the variables contained in it,
so that some variables have an effect on other variables,
which in turn can transfer these effects to other variables,
creating concatenations of variables.
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Figure 1 shows a structural equation model from the
health field (González & Landero, 2008). Models such as
the one shown here are also called “path analysis”
models, and all the variables contained in them are
observable, except prediction errors. The purpose of this
specific model is to predict the magnitude of a person’s
psychosomatic symptoms from a set of personal
antecedents. The model proposes the existence of three
predictor variables (self-esteem, self-efficacy and social
support) that influence the individual’s stress level. In turn,
stress has a direct influence on psychosomatic symptoms,
as well as an indirect one, modulated by the emotional
exhaustion level. As it can be seen, the model proposed is
somewhat more complex than a regression model, since
some variables play the role of predictor variable and
dependent variable simultaneously.
A rapid interpretation of the magnitude and direction of

the studied parameters reveals that the predictor variables
have a negative effect on the level of stress, so that the
lower the perceived self-efficacy, the lower the self-esteem
and the lower the social support, the greater the level of
stress. Moreover, perceived self-efficacy is the predictor
with the greatest effect, and all the predictors are related
to each other. With the predictors employed we can
account for 42% of the variability of the stress. Moreover,
stress has a direct and positive (0.16) influence on
psychosomatic symptoms, but the indirect effect via
emotional exhaustion is greater (0.21=0.54*0.39).
Overall, 24% of the differences in the subjects’
psychosomatic symptoms are accounted for. The meaning
of these and other elements of the figure will be explained
later.
Structural equation models are so called because it is

necessary to use a set of equations to represent the
relationships proposed by the theory. To represent the
relations in the above example, three regression
equations are being used and estimated simultaneously. 
There are many types of models with different levels of

complexity and with different purposes. All of them are
models of a statistical nature. This means that they
consider the presence of measurement errors in the
observations obtained from reality. They normally include
multiple observable variables and multiple unobservable
(latent) variables, though some, such as that of the
example, only include latent variables corresponding to
the prediction errors.
As regards their estimation, structural equation models

are based on the correlations between the variables

measured cross-sectionally in a sample of subjects.
Therefore, in order to make the estimations, it is sufficient
to measure a set of subjects at a given moment in time.
This makes these models especially attractive. Even so, it
should be borne in mind that the variables must permit the
calculation of correlations, so that they must be
quantitative, and preferably continuous.
The strong points of these models are: having developed

a set of conventions that permit their diagrammatic
representation, the possibility of hypothesizing causal
effects among the variables, the fact that they permit the
concatenation of effects between variables, and the fact
that they permit reciprocal relations between variables.
There are many types of models that can be defined with

this methodology. The most popular of those mentioned in
the statistical literature are: Multiple regression with
multicollinearity, Confirmatory factor analysis (see
Ferrando & Anguiano, 2010), Second-order factor
analysis, Path analysis, Complete causal model with latent
variables, Latent curve model (see Bollen & Curran,
2006), Multilevel models (see Skrondal & Rabe-Hesketh,
2004), Multi-group models, Mean-based models
(ANOVA, ANCOVA, MANOVA and MANCOVA; see
Bagozzi & Yi, 1994) and Mediation analysis (see
Preacher et al., 2007).

THE CONCEPT OF CAUSALITY
An interesting feature of these types of models is the
possibility they offer of representing the causal effects
among their variables. Although it is very attractive to be
able to represent diagrammatically the causal influence of
one variable on another, and although we are also able
to estimate the parameter corresponding to that effect, it
should be stressed that the estimation of the parameter
does not “demonstrate” the existence of causality. The
existence of a causal relation between the variables must
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be supported by the theoretical articulation of the model,
and not by its estimation with data of a cross-sectional
nature. In order to demonstrate scientifically that there is
a causal relation it is necessary to design a controlled
experiment with random assignment of subjects to the
study conditions (see Pardo, Ruiz & San Martín, 2009,
pp. 356-359). It should be borne in mind that structural
equation models are used in studies of correlational
nature, in which only the magnitude of the variables is
observed, and the variables are never manipulated.
The work of Boudon (1965) and Duncan (1966) opened

up a new possibility for approaching the problem of
causality, distinct from that of experimental manipulation,
proposing dependence analysis or path analysis. In this
type of analysis a causal theory is studied through the
specification of all the variables that are important for that
theory. Subsequently, the relations between the causal
effects can be derived from the causal theory, to
eventually estimate the size of those effects. The
generalization of the path analysis model gave rise to
structural equation models for the testing of theories – or
causal models, which amount to the same. According to
the logic of these models, on the basis of the theory
underlying the model, it will be possible to derive the
covariance measures expected among the variables
directly from the causal effects contained in the model. If
the theory is correct, the covariance measures derived
from the model and the covariance measures obtained
from the data should be equal.

STRUCTURE OF A MODEL
A complete structural equation model comprises two basic
parts: the measurement model and the structural relations
model.
The measurement model contains the form in which each

latent construct is measured through its observable
indicators, the errors that affect the measurements and the
relationship expected to be found among the constructs
when they are related to one another. In a complete
model there are two measurement models, one for the
predictor variables and another for the dependent
variables.
The structural relations model is that which we actually

want to estimate. It contains the effects and relationships
between the constructs, which will typically be latent
variables. It is similar to a regression model, but can also
contain chained effects and loops among variables.
Moreover, it contains the prediction errors (which are

distinct from the measurement errors).
There are two exceptional cases in which the model does

not contain both parts, and which are used relatively
frequently. First of all, confirmatory factor analysis models
contain only the measurement model, and the relations
between latent variables can only be of a correlational
nature. Secondly, path analysis models do not contain
latent variables; instead, the observable variables are
equated with the latent variables; consequently, the
structural relations model is the only one present. As a
result of this drawback, measurement errors and
prediction errors are combined in a single common term.

TYPES OF VARIABLES
In a structural model two different types of variable are
distinguished, according to their role and their
measurement.

✔ Observed or indicator variable. Variables measured
in the subjects, e.g., the items of a questionnaire.

✔ Latent variable. Characteristic that it is wished to
measure but that cannot be observed and is free of
measurement error. For example, a dimension of a
questionnaire or a factor in an exploratory factor
analysis.

✔ Error variable. Represents both the errors associated
with the measurement of a variable and the set of
variables not considered in the model and which may
affect the measurement of an observed variable.
These are considered to be latent variables, since
they are not directly observable. The error associated
with the dependent variable represents the prediction
error.

✔ Grouping variable. Categorical variables that repre-
sent membership of the different subpopulations to be
compared. Each code represents a subpopulation. 

✔ Exogenous variable. Variable that affects another
variable and that is not affected by any variable. The
independent variables of a regression model are ex-
ogenous.

✔ Endogenous variable. Variable that is affected by an-
other variable. The dependent variable of a regres-
sion model is endogenous. All endogenous variables
must be accompanied by an error.

STRUCTURAL DIAGRAMS: CONVENTIONS AND
DEFINITIONS
In order to represent a causal model and the relations to
be included in it, it is customary to use diagrams similar
to flow diagrams. These diagrams are called causal

STRUCTURAL EQUATION MODELS



S p e c i a l  S e c t i o n

37

diagrams, path diagrams or structural diagrams. The
structural diagram of a model is its graphic
representation, and is of great help in specifying the
model and the parameters contained in it. Indeed, today’s
software makes it possible to define the model in its
entirety on representing it in the graphic interface. On the
basis of the structural diagram, the software itself derives
the equations of the model and reports on the restrictions
necessary for it to be completely identified. Structural
diagrams follow some particular conventions that one
needs to know so as to be able to derive the
corresponding equations.

✔ The observable variables are shown within rectan-
gles.

✔ The unobservable (latent) variables are shown within
ovals or circles.

✔ The errors (be they of measurement or prediction) are
shown without rectangles or circles (though some
software programs show them in the same way as la-
tent variables).

✔ Bi-directional relations (correlations and covariations)
are shown as curved vectors with an arrow at each
end.

✔ All structural effects are shown as a straight arrow,
whose origin is the predictor variable and whose
end, at the point of the arrow, is the dependent vari-
able.

✔ The model parameters are shown on the correspond-
ing arrow.

✔ Any variable that is affected by other variables of the
model must also include an error term.

✔ Although it is not necessary for the user to specify it,
software programs tend to include, together with
each variable, its variance, and, if it is a dependent
variable, its corresponding proportion of explained
variance.

Structural diagrams also serve for the adequate
specification of the model with a view to estimation with
statistical software. The restrictions are made
diagrammatically or by imposing values on the diagram
itself. Moreover, statistical software programs make it
possible to check the specified model on the basis of the
diagram they generate. This helps to avoid overlooking
fundamental parameters in the definition of the model, so
that the user does not have to write down the model’s
equations explicitly and trust that the equations are the
right ones.
Let us review the model considered previously as an

example, but this time defined with more complexity.

Figure 2 shows a new version of the model that contains
six latent variables: self-esteem, self-efficacy, social
support, stress, emotional exhaustion and psychosomatic
symptoms. The first three latent variables are exogenous
(because they are not directly affected by any other
variable) and the last three latent variables are
endogenous, because they are affected by other
variables. The three endogenous variables have a term
that represents their prediction error (e_e, ece and esx).
Each endogenous latent variable is measured by means

of three observable variables called indicators. The latent
variable psychosomatic symptoms is measured in subjects
through three scales called INDI1SX, INDI2SX and
INDI3SX. The model assumes that a person with many
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psychosomatic symptoms will score high in all three
indicators and a person with few psychosomatic
symptoms will score low. The indicators are observable
but are not perfect measures of their latent variable.
Therefore, each indicator has an associated measurement
error. The measurement error of the indicator INDI1SX is
the unobservable variable esx1. Figure 3 shows the
measurement model of the latent variable psychosomatic
symptoms. In the case of exogenous latent variables, each
construct is measured by a single indicator, so that this
part of the model can be simplified by identifying the
latent variable with its indicator, as can be seen in the
final estimated model in Figure 5.
Figure 4 shows the structural relations model. This model

contains only the latent variables. It is easy to appreciate
in it that the exogenous variables can correlate with one
another (which would be impossible in an ordinary
regression model), and that each endogenous variable
has an associated prediction error that accounts for part

of its variability (this error is not associated with the
measurement errors, which are represented in the
measurement model).
Figure 5 represents the final estimated model, once it has

been simplified with respect to the exogenous variables.
On the left are the three exogenous variables used for
predicting the stress level. The three variables are
observable and correlate with one another (they are
multicollinear). Their negative effect on stress indicates
that lower levels of self-esteem, self-efficacy and social
support permit us to predict a higher level of stress.
(Although not indicated in the diagram, all the regression
weights differ significantly from zero). The combination of
the three predictors permits the explanation of 47% of the
variance of stress (free of measurement error), which is
indicated numerically on the latent variable. The
proportion of variance of the stress accounted for by its
predictors is inversely proportional to the variance of its
prediction error, so that it is not necessary to indicate  this
second value, while the corresponding error variable is
indeed shown (e_e). Each endogenous latent variable is
measured by three indicators. Each arrow that proceeds
from a latent variable toward its indicator is interpreted in
the same way as the loading in factor analysis, and (in the
standardized solution) corresponds to the correlation of
the indicator with the latent variable it intends to measure.
The numerical value shown next to the box of an observed
variable is the proportion of variance shared by the
indicator and the corresponding latent variable (similar to
the communality) and which is not attributable to the
measurement error. In the central part of the model are
the effects of each latent variable on the others. As it can
be seen, stress has a greater direct effect on emotional
exhaustion than on psychosomatic symptoms. In turn, the
effect of stress on psychosomatic symptoms is lower than
the effect received from emotional exhaustion. The figure
does not show the total effect of stress on psychosomatic
symptoms (0.50), which would be the sum of the direct
effect (0.17) and the indirect effect (0.64*0.51=0.33) via
emotional exhaustion. 
Comparing the complete model with the path model in

Figure 1, it can be seen that the effects have increased
substantially in some cases and that, moreover, there has
been a rise in the proportion of explained variance of the
endogenous variables. It can also be appreciated that not
all the indicators are equally accurate. Finally, it is to be
expected that this equivalent model, though useful, will
obtain poorer fit values than the path model for the mere
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fact of containing a greater number of variables (which
affects the model’s degrees of freedom and the goodness-
of-fit statistics). 
Just as there is a set of conventions for representing the

models in diagrammatic form, there are also conventions
for naming each element of a model, be they variables or
parameters, in the mathematical notation. We shall not
go into an explanation of this notation here, but it is useful
to know that it is customary to use Greek letters (see Ruiz,
2000; Hayduk, 1987).

STEPS IN THE DEVELOPMENT OF A MODEL
The estimation of a model begins with the formulation of
the theory that supports it. This theory should be
formulated so that it can be tested with real data.
Specifically, it must contain the variables considered
important and which are to be measured in the subjects.
The theoretical model must specify the relations expected
to be found between the variables (correlations, direct
effects, indirect effects, loops). If a variable is not directly
observable, mention should be made of the indicators that
permit its measurement. Normally, the model will be
formulated diagrammatically, making it easy to identify
the equations and parameters.
Once the model has been formulated, each parameter

must be correctly identified and derivable from the
information contained in the variance-covariance matrix.
There are strategies for ensuring that all the parameters are
identified, such as using at least three indicators per latent
variable and making the measurement scale of each latent
variable equivalent to one of its indicators (this is achieved
by setting the weight of one of the indictors arbitrarily at a
value of 1). Even so, it may occur that the model is not
completely identified, which will mean that it is being
attempted to estimate more parameters than the number of
pieces of information contained in the variance-covariance
matrix. In that case it will be necessary to impose further
restrictions on the model (setting the value of one or more
parameters) and reformulate it.
When the variables that form part of the model have

been selected, it must be decided how to measure the
observable variables. These measurements (generally
obtained by means of scales or questionnaires) will permit
us to obtain the variances and covariances on which to
base the estimation of the parameters of a model correctly
formulated and identified (we assume that we are
working with a representative and sufficiently large
sample of the population under study).

The estimation of the model’s parameters is followed,
first of all, by an assessment of the model fit. If the
estimations obtained do not correctly reproduce the
observed data, the model will have to be rejected, and
with it the theory that supported it; the model can then
be corrected by making additional theoretical
assumptions. Secondly, a technical assessment is made
of the estimated values for the parameters. Their
magnitude must be adequate, the effects must differ
significantly from zero, inappropriate estimations (such
as negative variances) must not be obtained, and so on.
It may be the case that some of the estimations attain a
value close to zero; when this occurs it is recommended
to simplify the model by eliminating the corresponding
effect. Finally, all the parts of the model must be
interpreted. If the model has been accepted as a good
explanation of the data it will be interesting to validate
it with other samples, and quite possibly to use it as an
explanation of more complex theories that can be
tested. The process is summarized in diagrammatic
form in Figure 6.
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TYPES OF RELATIONSHIP
In multivariate techniques we are accustomed to studying
the simultaneous relationship of diverse variables among
one another. In these techniques the relationships between
dependent and independent variables are all of the same
level or the same type. In a structural equation model we
can distinguish different types of relationship.
Understanding these different types of relationship can be
of great help in formulating the models on the basis of
ordinary language. Below we discuss these types of
relationship, following the scheme proposed by Saris and
Stronkhorst (1984).

COVARIATION vs CAUSALITY
We say that two phenomena covary, or are correlated,
when on observing a greater quantity of one of the
phenomena we also observe a greater quantity of the
other (or a lesser quantity if the relationship is negative).
Likewise, low levels of the first phenomenon are
associated with low levels of the second. Thus, for
example, when we say that aptitude and performance
correlate with one another, we expect subjects with a
higher level of aptitude to show better performance, and
vice versa. However, as we have already stressed,
covariation and causality are not the same thing. When
we observe a strong relationship (covariation) between
two variables, we should not interpret this as signifying a
causal relationship between them. There may be other
variables we have not observed, and which enhance or
attenuate the relationship. For example, it may be that
motivation and performance are related, and that their
relationship is conditioning the relationship between
aptitude and performance (enhancing it or attenuating it).
A possibly clearer example is that proposed by Saris. If
we gather data on the number of vehicles and the number
of telephones in different populations, we shall surely find
a covariation between the two variables. However, that
must not lead us to think that the greater number of
vehicles is the cause of the greater number of telephones.
Another level of analysis is causality. If we collect

information on the number of smokers in a room and the
amount of smoke in that room, we will observe a high
covariation between the two variables. It seems
reasonable to go one step further in our interpretation of
this result and argue, conceptually, that the quantity of
smokers causes the amount of smoke, and that changes in
the quantity of smokers will cause a change in the amount
of smoke.

The change of perspective from the covariation observed
to the causality attributed to two variables is made by the
researcher, who is the one hypothesizing the causality. It
is good practice for statements we make to be worded
explicitly with respect to the type of relationship we wish
to test between two variables.
The examples we have considered in this section can be

represented by means of the diagrams we have
developed up to now.
If we are studying the correlation between aptitude and

performance it should be represented with a curved arrow
between the two variables.

Figure 7. Covariation relationship

In contrast, the causal relation between the number of
smokers and the amount of smoke will be represented by
a vector from the cause to the effect.

Figure 8. Relationship of a causal nature

SPURIOUS RELATIONSHIP
A basic causal relationship or a covariation relation

involves two variables. In a spurious relationship the
relation is made up of at least three variables. A spurious
relationship is one in which the covariation between two
variables is due, totally or partially, to the common
relation of the two variables with a third one. This is why
the covariation between two variables may be very high,
while at the same time their causal relation is null. A
typical example of a spurious relationship is that found
between height and intelligence in pre-school children. If
we measure the two variables in such children it is quite
possible that we will find a strong relationship between
them; however, nobody would seriously think that height
causes intelligence. There is a third variable, the child’s
development (age) that is the cause of both variables and
which leads to this relationship being observed. This can
be represented diagrammatically as follows:
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Figure 9. Spurious relationship

To study the presence of this phenomenon we use the
partial correlation coefficient, which measures the
relationship between two variables after partialling out
the effect of a third one (it is also possible to partial out
the effect of more than one variable). In our example, the
correlation between the three variables will be high and
positive, whilst the partial correlation between intelligence
and height (partialling out the effect of age) will be
practically null.
In general, we can state that the causal relation between

two variables implies that the two covary, the rest of the
variables remaining constant. But the opposite is not true:
covariation between two variables does not necessarily
imply that there is a causal relation between them – the
relationship may be spurious, false, fictitious (see Pardo,
Ruiz & San Martín, 2009, pp. 356-357).

DIRECT AND INDIRECT CAUSAL RELATIONSHIP
Up to now we have mentioned only direct causal
relationships. An indirect causal relationship implies the
presence of three variables. There is an indirect
relationship between two variables when a third variable
modulates or mediates the effect between them – that is,
when the effect between the first and second variable is
via a third one. Variables that mediate in an indirect
relationship are also referred to as modulating variables.
Let us consider the relation between aptitude,

performance and motivation. We can think of motivation
level as a variable that modulates the relation between
aptitude and performance. This relationship can be
represented thus:

Figure 10. Indirect causal relationship

The model in the figure proposes a direct effect of
aptitude on motivation and of motivation on performance.
Moreover, there is an indirect effect between aptitude and
performance. The indirect effect of the variable aptitude
on performance can be enhanced (or attenuated) by the
modulating variable motivation.
The existence of an indirect effect between two variables

does not preclude the possibility that there will also be a
direct effect between them. Thus, the relations proposed in
Figure 10 can become more complex, as follows:

Figure 11. Direct and indirect relationships

Once more, it is the researcher who must make explicit
the types of relationship that his or her theory is capable
of explaining.

RECIPROCAL CAUSAL RELATIONSHIP
The causal relationship between two variables can be
either reciprocal or unidirectional. When the relationship
is reciprocal (bidirectional), the cause variable is in turn
the effect of the other one. This type of relationship is
represented by two separate arrows pointing in opposite
directions. A reciprocal relationship is actually a feedback
loop between two variables. The reciprocal causal
relationship can be direct or indirect, involving other
variables before the loop is closed.
The relationship between Anxiety and Performance can

be represented as a reciprocal loop: the greater the
anxiety, the poorer the performance; and the poorer the
performance, the greater the anxiety.

Figure 12. Reciprocal causal relationship
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TOTAL EFFECTS
As we have seen, each type of causal relationship is
represented by means of a type of effect. There is a final
type of effect (or relationship) that we have not mentioned,
that of non-analyzed effects. In the diagram these would
be the arrows that could have been shown but are not.
Their absence may be for one of two reasons. On the one
hand, it may be that important variables for explaining
the covariation in the data have been left out
(specification error). On the other hand, it may be
because it is assumed that the rest of the variables not
considered in the model compensate one another, their
effect being incorporated in the model’s error terms. The
sum of the spurious effects and the non-analyzed effects
results in so-called non-causal effects. Once the model is
defined, the spurious effects appear when the
endogenous variables are correlated beyond the
estimated effects (covariances emerging between the
prediction errors). Non-analyzed effects appear when the
observable variables are correlated beyond what the
model predicts (covariances emerging between the
measurement errors).
Given that an endogenous variable can receive a direct

effect from another variable and also an indirect effect
from that same variable modulated by other variables, it
is customary to add the two types of effect, giving rise to
the total effect.

THE CONCEPT OF “FIT”
To understand the basis of structural equation models it is
necessary to change our perspective on what the concept
of a model’s fit means. In linear regression, when we
speak of the parameter estimates we choose those
estimations that best fit the model to the data, in the sense
that they minimize the prediction errors committed with
the model for the set of subjects in the sample (in the least
squares method). In contrast, in structural equation
models the aim is to fit the covariances between the
variables, rather than seeking the fit to the data. Instead
of minimizing the difference between the predicted and
observed values at an individual level, what is minimized
is the difference between the covariances observed in the
sample and the covariances predicted by the structural
model. This is why these models are also referred to as
covariance structure models (Long, 1983). Thus, the
residuals of the model are the difference between the
covariances observed and the covariances reproduced
(predicted) by the theoretical structural model.

The fit of a model can be expressed in a basic
hypothesis, which proposes that, if the model is correct
and we know the parameters of the structural model, the
populational covariance matrix could be reproduced
accurately based on the combination of the model’s
parameters. This notion of fit is summarized in the
following equation

where  is the populational variance-covariance matrix
among the observable variables,  is a vector that contains
the parameters of the model and ( ) is the variance-
covariance matrix derived as a function of the parameters
contained in the vector .
We can see the meaning and scope of this hypothesis

through an example (Bollen, 1989). Let us consider the
model shown in Figure 13:

Figure 13. Simple regression model

The regression equation that defines it is as follows
(subindices have been removed)

Where g is the regression coefficient and  is the variable
that represents the error term, which is assumed to be
independent of x and whose expected value is zero. The
variance-covariance matrix among the observed
variables x and y is

This is the matrix we obtain directly on analyzing the
data descriptively, and represents the relationships
between the variables in the sample. However, the
dependent variable y is a function of the variables x and
, and of the parameter g. We can rewrite the elements of

the matrix  according to equation (2). Operating, it is
relatively easy to demonstrate that the variance of the
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dependent variable is a function of the parameter g and
of the error variance:

It is also possible to demonstrate that the covariance
between x and y is a function of the parameter g and of
the variance of the predictor variable:

Substituting in equation (3) the derived expressions
written according to the parameters of the model, we
arrive at the reproduced populational variance-
covariance matrix:

This matrix is also called an implied variance-covariance
matrix. We can now substitute in equation (1) and
express the basic hypothesis once more as:

In this expression the elements on the right and those on
the left correspond one to one, given the specifications of
the model proposed. If the model is correct and we know
the values of the parameters on the right of the equation,
it will not be difficult to check the equality of the terms. The
objective of the estimation is to obtain those values of the
parameters (in this case the regression coefficient and the
error variance) that permit this equation to be maintained
with the sample data.
To be able to estimate the parameters of the model

we had to await the development of specialized
computer software. In this brief approach to structural
equation models it suffices to know that the estimations
are made with a view to maximizing the fit of the
model. To this end we use some measure summarizing
the magnitude of the differences between the variances
and covariances observed (left-hand side of the
equation) and reproduced (right-hand side of the
equation), and we attempt to minimize such
differences.

GOODNESS-OF-FIT STATISTICS
Once the model has been estimated its quality must be
assessed. To this end, goodness-of-fit statistics are used.
There are three types of goodness-of-fit statistics: those of
absolute fit (which rate the residuals), those of relative fit
(which compare the fit with respect to another model with
poorer fit) and those of parsimonious fit (which rate the fit
with respect to the number of parameters used). None of
them offers all the information necessary for assessing the
model, and it is customary to use a set of them, reporting
them all together (see Schreiber et al., 2006).
The following table lists those most widely used, together

with their standard abbreviations and the reference value
that should be attained to indicate good fit. The chi-
squared statistic is conceptually the most appealing, since
it allows us to test the null hypothesis that all the model’s
errors are null, a hypothesis which it is pertinent to
maintain with the sample used. However, this statistic is
highly sensitive to sample size: with large samples (over
100 or 200 cases) it is relatively easy to reject the null
hypothesis when the model actually attains a good fit. For
this reason, as well as assessing its statistical significance,
a comparison is usually made with its degrees of freedom.
This statistic is always reported.

TYPICAL PROBLEMS
We should point out various typical problems that tend to
be found in the published models, some limitations that
should be taken into account and the safety measures that
must be taken on using the models.
In the definition of a model it is essential not to exclude

important variables from the theoretical point of view.
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TABLE 1
GOODNESS-OF-FIT STATISTICS AND 

REFERENCE CRITERIA

Index Abbreviation Criteria

Absolute fit
Chi-square χ2 Significance > 0.05
Chi-square /degrees of freedom χ2 /df Less than 3 

Comparative fit
Comparative goodness of fit index CFI ≥ 0.95
Tucker-Lewis index TLI ≥ 0.95
Normed Fit Index NFI ≥ 0.95  

Parsimonious fit
Parsimony-adjusted NFI PNFI Close to 1

Other
Goodness of fit index GFI ≥ 0.95
Adjusted goodness of fit AGFI ≥ 0.95
Root mean square residual RMR Close to 0
Root mean square error RMSEA < 0.08 
of approximation
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First of all, it should be attempted to measure all the
pertinent variables. Secondly, any model in which the
conceptually central variables lack significant effect
should be called into question.
The fact that a model obtains good fit with a sample

does not rule out the possibility of there being other
tentative models that might also fit the data well. It is
always of interest to test other models that might also be
supported by the theory (or by rival theories).
Occasionally, models are published that contain both

the effects corresponding to parameters differing from
zero and effects which after the estimation can be
considered null. Although more space would be required
for a full explanation, information should be provided on
both the theoretical model with all the parameters and
variables proposed and the final model containing only
the parameters that differ from zero and the variables
with statistical effect.
It is well known that goodness-of-fit statistics deteriorate

rapidly as sample size increases, and many researchers
report on small samples so as to avoid deterioration of the
fit values. Therefore, one should call into question those
models estimated with small or relatively unrepresentative
samples. It is customary to require sample sizes in excess
of 100 subjects, and those of over 200 subjects give good
guarantees.
These models admit the use of a small number of

variables (10-20). The greater the number of variables,
the more difficult it is to correctly reproduce the
covariances observed. Moreover, the more variables
there are, the greater the sample size should be (a rate of
over 10 subjects per observed variable is recommended).
Many studies employing these models abuse the fitting

and re-fitting of the possible theoretical relations,
including and excluding effects and variables in a
tentative manner. With this purpose they use the
significance values and the modification indices of the
individual parameters (of both the analyzed effects and
the excluded effects), which provide information on the
problems of fit present in the data. These over-
manipulated models tend to be quite unstable, and lose
good properties of fit when replicated with other samples.
Unfortunately, replication studies are scarce, so that it is
recommended to maintain a certain degree of scepticism
when a study fails to report in detail on how the data and
the model may have been manipulated.
Categorical variables should not be used, since, ideally,

all the variables should be quantitative and continuous to

justify the use of variance and covariance statistics. As we
have seen, it is essential for the sample estimation of the
variances and covariances between the observed
variables to be accurate, if the process of estimation of the
model’s parameters is to be successful. However, it is very
common to use items in ordinal, Likert-type format to
measure subjects, given the fact that they can be
answered easily. In such cases it is appropriate to group
the individual items to form scales with more continuous
measurement (see Finney & DiStefano, 2006).

FINAL CONSIDERATIONS
In spite of the limitations mentioned, structural equation
models represent a highly powerful tool for formalizing in
an explicit way relatively complex theories; moreover,
they make it possible to test those theories and to include
complex or hierarchical relations between multiple
variables.
They also permit the extension of some traditional

models on including, for example, measurement errors in
factor analysis models, on estimating directly the loadings
and correlations among factors (without using rotation),
or on including individual significance tests for the
estimated factor loadings.
Furthermore, in these models it is possible to separate

measurement errors from prediction errors, attenuating
the effect of the measurement errors on the assessment of
the model’s predictive capacity.
These models, together with canonical regression

models, are the only ones to allow the analysis of
problems in which there is more than one dependent
variable and to analyze those variables simultaneously.
Although the estimation of these models has been

greatly simplified with the advent of estimation software
which uses a graphic interface, it is important to bear in
mind that its use is laborious. Even so, they are
undoubtedly of inestimable help in facing the challenge of
developing explanatory theories of human behaviour.

ADDITIONAL RESOURCES
Those who wish to explore these models in more depth,
while remaining at a relatively basic level, may consult the
manuals by Byrne (1994, 1998, 2001, 2006), while
those who would prefer an even more elementary
introduction might wish to look at the book by Saris and
Stronkhorst (1984) and the brief papers by Long (1983a,
1983b, 1990). A good explanation of the development
and interpretation of these models can be found in the last
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three chapters of the manual by Hair et al. (2006), which
is highly practical even though it contains scarcely any
formulation and lacks demonstrations. The manual by
Bollen (1989) is excellent, and quite complete, but
requires a good level of previous knowledge in statistics.
Also highly recommended are the manuals of the most

widely used estimation software: AMOS (Arbuckle,
1997), LISREL (Jöreskog & Sörbom, 1986; SPSS, 1990,
1993), EQS (Bentler, 1985) and CALIS, which is part of
SAS (Hatcher, 2003).
There are also two model estimation software packages

that can be used free of charge: HYBALL
(http://web.psych.ualberta.ca/~rozeboom/) and
TETRAD (http://www.phil.cmu.edu/projects/tetrad/).
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