
ultidimensional scaling, in its most basic formula-
tion, sets out to represent a set of objects in a
low-dimensionality space. The word ‘object’ is

quite generic, and actually refers to any entity one might
wish to scale. Another, equivalent term in Psychology is
stimulus. The number of dimensions, usually small (two,
three, four), is decided by the researcher for substantive
reasons, though it can also be set on the basis of statisti-
cal criteria. The models and construction methods of uni-
dimensional scaling, which were developed in the first
half of the 20th century (notably by Thurstone, Likert,
Guttman or Coombs), constitute the antecedents of the
most modern models and methods of multidimensional
scaling; indeed, in many cases the latter can be consid-
ered as generalizations of the former.
The first author to develop a model and a method of

multidimensional scaling was Torgerson (1958). Today
his model is known as the classical metric model. The
name metric derives from the measurement scale that is
assumed, or required, for the data, which is based on in-
tervals, in Stevens’ hierarchy. A few years later, Shepard

(1962) and Kruskal (1964a, 1964b) proposed a model
that permits a descent in the measurement scale to the or-
dinal level. This model is referred to as classical non-
metric. Carroll and Chang (1970) were responsible for a
significant advance with their proposal of a model that
permitted the derivation of, in addition to the object
space, a subject space in which to represent the weight
or weighting given by each subject to each dimension of
the object space. The Carroll and Chang model, known
as INDSCAL, is of considerable psychological interest,
since it permits or takes into account individual differ-
ences in the perception of the object space. There is a
common object space, shared by all the subjects, but it
allows for differences between some individuals and oth-
ers in the perception of that configuration.
There are specific computer programs for each one of

the models mentioned above, but today it is possible to
solve multiple multidimensional scaling problems with a
single computer program, such as PROXSCAL or
ALSCAL, which involve the implementation of numerous
models and form part of the widely used SPSS statistical
package. 
One of the features that most clearly distinguishes multi-

dimensional scaling from other statistical data analysis
models is the input matrix. In Psychology we are accus-

MULTIDIMENSIONAL SCALING:
CONCEPT AND APPLICATIONS

Constantino Arce, Cristina de Francisco and Iria Arce
University of Santiago de Compostela

The present article offers a conceptual, and at the same time operative, vision of the concept of multidimensional scaling. In
the manner in which it is presented, the aim is first of all to help interested psychologists understand the multidimensional scal-
ing model, using a number of simple, intuitive examples; and, secondly, to help them acquire the competence required for
solving different multidimensional scaling problems through the use of specific software. Mathematical formulae and methods
will be downloaded in the process, though at no point shall we renounce the methodological rigour the subject demands.
Key words: Scaling, Proximity data, Preference data, Dimensionality reduction.

A través del presente artículo se ofrece una visión conceptual, a la vez que operativa, del concepto de escalamiento multidi-
mensional. En la forma de presentación se busca, en primer lugar, que los psicólogos interesados comprendan lo que es el
modelo de escalamiento multidimensional a través de varios ejemplos muy sencillos e intuitivos y, en segundo lugar, adquie-
ran competencias que le permitan resolver distintos problemas de escalamiento multidimensional con el uso de software espe-
cífico. Se pretende igualmente descargar la presentación de fórmulas y métodos matemáticos sin renunciar por ello al rigor
metodológico que el tema requiere.
Palabras clave: Escalamiento de objetos, Escalamiento de sujetos, Datos de proximidad, Datos de preferencia, Reducción de
la dimensionalidad.

Correspondence: Constantino Arce, Facultad de Psicología, Uni-
versidad de Santiago de Compostela, 15.782 Santiago de Com-
postela. España. E-mail: constantino.arce @usc.es

S p e c i a l  S e c t i o n

46

Papeles del Psicólogo, 2010. Vol. 31(1), pp. 46-56
http://www.cop.es/papeles

M



S p e c i a l  S e c t i o n

47

tomed to using a rectangular data matrix X with n sub-
jects in the rows and p variables in the columns, where
an element xij represents the measure obtained for a
subject i in a variable j. In its most typical form, the input
matrix for the multidimensional scaling is a square data
matrix of order p with the same entity represented in the
rows and the columns: the objects we are trying to repre-
sent in the multidimensional space. An element in this
matrix (delta) represents the distance or dissimilarity be-
tween two objects i and j. What we have in the matrix is
actually a matrix of distances or dissimilarities between
all the pairs of objects.
The difference between distance (geometric concept)

and dissimilarity (psychological concept) resides in the
fact that the former, being a mathematical concept, does
not contain error, whilst the latter, being a psychological,
perceptual or subjective concept, does indeed contain er-
ror. Dissimilarities are, in reality, distances that contain
error or distances distorted by the perceptual mecha-
nisms of human beings. The models and methods of mul-
tidimensional scaling can solve both types of problem,
with error and without error in the input data. In Psychol-
ogy it is more customary to work with data that contain
error, and multidimensional scaling models can provide
an approach to this problem.

DERIVATION OF A CONFIGURATION OF POINTS
FROM A DISTANCE MATRIX
Table 1 shows the kilometric distance matrix between 7
Spanish cities: A Coruña, Bilbao, Barcelona, Cáceres,
Madrid, Sevilla and Valencia.
Our proposal was, on the basis of this matrix, to draw

up a map of Spain – that is, to obtain a spatial represen-
tation of the 7 cities in a plane, in which one of the axes
would be the direction north-south and the other axis
would be east-west. To this end we used the PROXSCAL
procedure, implemented in SPSS.
The result can be seen in Figure 1.
Given that the map of Spain is well known, we can rate

subjectively the extent to which the map derived by the
program equates to the true map. It can be said that the
map obtained is quite good, though not perfect. In Psy-
chology research it is usual to work with configurations
without an objective counterpart known in advance.
Therefore, when the program produces a solution it be-
comes very important to have an indicator, or even sev-

eral (the more the better), of the degree to which the con-
figuration derived by the program fits the ideal (un-
known) one. All multidimensional scaling programs
provide users with goodness-of-fit indices so that they
can rate how “good” the solution obtained by the pro-
gram is for their problem.
The goodness-of-fit indices offered by PROXSCAL for

the map of Spain are shown in Table 2.
There are two types of indicator: those for which zero

represents a perfect fit (of this first type would be the in-
dicators Normalized Raw Stress, Stress-I, Stress-II and S-
Stress); and those for which the perfect fit is represented
by 1 (of this second type would be the last two in the
table – Dispersion Accounted For [D.A.F.] and Tucker’s
congruence coefficient). Observing the values of any of
these indicators one reaches the same conclusion: that
the model’s fit in this case is good or very good. This is
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TABLE 1
KILOMETRIC DISTANCES BETWEEN 7 SPANISH CITIES

A Coruña Barcelona Bilbao Cáceres Madrid Sevilla Valencia

A Coruña 0
Barcelona 1050 0
Bilbao 542 567 0
Cáceres 617 895 591 0
Madrid 586 600 379 294 0
Sevilla 857 971 847 256 507 0
Valencia 937 341 569 615 352 637 0

FIGURE 1
MAP OF SPAIN DERIVED BY PROXSCAL
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because the degree of error in the data (distances) is
very small. The distances used as input data were by
road. If we were to use distances “as the crow flies” the
fit would be perfect. The first four goodness-of-fit indices
should equal 0 and the last two should equal 1.

PERCEPTION OF MEANS OF TRANSPORT
Arce (1993) set out to obtain a perceptual map of the
means of transport used by the citizens of Santiago de
Compostela. To this end, he drew up a list of all the
means of transport (public and private) that could be
available to them, made up all the pairs possible and
asked a sample of citizens to judge the dissimilarity for
each pair of means of transport.
Nine means of transport were studied: aeroplane, train,

inter-city bus, city bus, taxi, private car, motorcycle,
moped and bicycle. With nine objects or stimuli (in this
case, means of transport) 36 pairs can be formed. The
formula used to arrive at the number of pairs was n(n-

1)/2, where n is the number of objects or stimuli. Substi-
tuting, in this case, where n = 9, we are left with 9(9-
1)/2 = 36. Table 3 shows the 36 pairs formed in the
study following the standard rotation method, which is
very useful because the data (dissimilarities) are already
in order in the form in which they will subsequently be
entered in the input matrix. The method follows the se-
quence (1,2), (1,3) … (1,9), (2,3), (2,4) … (2,9), (3,4)
(3,5) … (3,9) … (8,9).
For forming the number of pairs, we assumed the sym-

metry of the dissimilarity judgements, meaning that for a
given pair (e.g., aeroplane/train) it is assumed that the
judgement emitted by a subject will be the same if the
pair is presented in the order aeroplane/train as if it
were presented in the order train/aeroplane. With some
rare exceptions, this assumption is customary in Psychol-
ogy research.
Once the list with all the pairs to be judged by the sub-

jects has been drawn up, a response scale must be de-
signed for them to indicate their dissimilarity judgements
on the objects or stimuli in each pair. The research in
question employed a nine-point scale, in which 1 indicat-
ed that the means of transport included in each pair were
very similar, and 9 indicated that they were very differ-
ent. By way of example:

Aeroplane/train

Very similar Moderately similar Very different

1      2                            3      4       5      6                7     8      9

Subjects used this scale to judge the dissimilarity in the
36 pairs formed in the study.
Figure 2 shows the perceptual map of the means of

transport for one subject from the sample. In the configu-
ration of points obtained we now have an additional
problem with respect to the configuration in Figure 1. In
the problem of distances between cities we knew the
meaning of the axes: one was for the north-south direc-
tion and the other was for east-west. But what is the
meaning of the axes of the configuration we have now
obtained? The subject, in making his or her judgements,
has probably used different axes or dimensions to assess
the dissimilarity between the means of transport. For ex-
ample, it may be that in judging the dissimilarity for a
given pair he/she has concentrated on the safety of the

MULTIDIMENSIONAL SCALING

TABLE 2
GOODNESS-OF-FIT INDICES OFFERED BY PROXSCAL

Normalized Raw Stress .00055
Stress-I .02349
Stress-II .06824
S-Stress .00117
Dispersion Accounted For (D.A.F.) .99945
Tucker’s Congruence Coefficient .99972

TABLE 3
LIST OF PAIRS OF MEANS OF TRANSPORT, 

ORDERED BY STANDARD ROTATION

1. Aeroplane/train 19. Inter-city bus/motorcycle
2. Aeroplane/inter-city bus 20. Inter-city bus/moped
3. Aeroplane/city bus 21. Inter-city bus/bicycle
4. Aeroplane/taxi 22. City bus/taxi
5. Aeroplane/private car 23. City bus/private car
6. Aeroplane/ motorcycle 24. City bus/ motorcycle
7. Aeroplane/moped 25. City bus/moped
8. Aeroplane/bicycle 26. City bus/bicycle
9. Train/inter-city bus 27. Taxi/private car
10. Train/city bus 28. Taxi/motorcycle
11. Train/taxi 29. Taxi/moped
12. Train/private car 30. Taxi/bicycle
13. Train/motorcycle 31. Private car/motorcycle
14. Train/moped 32. Private car/moped
15. Train/bicycle 33. Private car/bicycle
16. Inter-city bus/city bus 34. Motorcycle/moped
17. Inter-city bus/taxi 35. Motorcycle/bicycle
18. Inter-city bus/private car 36. Moped/bicycle
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means of transport, while for another pair he/she may
have focused on their social prestige, and so on. By
means of multidimensional scaling we seek to obtain a
configuration of points, but also to ascertain the meaning
of each axis or dimension of that configuration. There
are various ways of approaching this issue, but the most
reliable involves gathering more data. In fact, in the
above-mentioned research, in addition to asking subjects
for their dissimilarity judgements, they were asked to rate
each of the means of transport with respect to a series of
properties including safety, stability, resistance, strength,
weight, attractiveness, prestige, punctuality, social status
and comfort. Subsequently, it was determined whether
there was any type of relationship between any of these
properties and the position of the means of transport on
each one of the dimensions derived. In a first, explorato-
ry phase we tried solutions with 2, 3 and 4 dimensions.
The solution that produced the best meaning was that of
3 dimensions. Multiple regression analyses, in which we
took as dependent variable a given property of the
means of transport and as independent variables the co-
ordinates of the means of transport derived with the mul-
tidimensional scaling programs, showed that dimension
1 (horizontal axis) represented the perceived safety of the
means of transport, dimension 2 (vertical axis) referred to
their attractiveness and dimension 3 (depth axis) repre-
sented their social prestige. In Figure 2, which shows the
first two dimensions of the three-dimensional solution, the
means of transport situated on the right (train, inter-city
bus, city bus, etc.) are perceived as safer, and those on
the left (bicycle, motorcycle, moped) as more unsafe.
Likewise, the means of transport situated higher up (aero-
plane, taxi, car, motorcycle) are perceived as more at-
tractive, and those situated lower down as less attractive
(train, city-bus, inter-city bus, bicycle, moped).

THE CASE OF MORE THAN ONE INPUT MATRIX: 
THE INDSCAL MODEL
The examples used so far involved one input matrix. In
the first problem it was the matrix of kilometric distances
between the seven Spanish cities; in the second problem
it was the matrix of dissimilarities between the means of
transport for a subject in the sample. In the first problem,
indeed, there was no other possibility, because there is
just one distance matrix, but the second problem involves
multiple subjects, and we would have liked to enter the

dissimilarity matrix of each subject. In fact, in the original
research this is what was done. Today, any multidimen-
sional scaling program will permit one to obtain a com-
mon object space shared by a sample of subjects or
another data source.
Among the models that deal with the issue of multiple

input matrices there is one that merits particular atten-
tion, because it has properties that can be very interest-
ing from the psychological point of view: Carroll and
Chang’s (1970) INDSCAL model. This model permits us
to obtain two spaces: the object space, common to all
subjects in the sample, and the subject space. The novel
aspect of the model is actually this latter space. Repre-
sented in the subject space is the weight, weighting or
importance given by each subject to each one of the di-
mensions of the configuration of objects. Thus, the sub-
jects share the same object space but the model permits
each of them to perceive that space differently; in sum, it
allows individual differences between the subjects.
Arce (1994) asked two subjects to rate the dissimilarity

between 7 makes of car: Ferrari, Porsche, BMW, Mer-
cedes, Renault, Seat and Opel. He obtained two dissimi-
larity matrices and used both for multidimensional
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FIGURE 2
PERCEPTUAL MAP OF THE MEANS OF TRANSPORT

(DIMENSION 1 VERSUS DIMENSION 2)
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scaling. The results revealed that the first perceptual di-
mension was the “sporty” features of the brand and the
second referred to comfort. Figure 3 shows the common
object space shared by the two subjects. The cars situat-
ed more to the right (dimension 1) are perceived as more
sporty than those situated on the left, and those situated
lower down (dimension 2) are considered more comfort-
able than those situated higher up.

Figure 4 shows the subject space. Whilst the object
space is common for the two objects, the subject space
tells us that subject 1 (SRC_1 on the graph) gives more
importance to dimension 1, the sporty features of the car,
whilst subject 2 (SRC_2 on the graph) gives more impor-
tance to the comfort of the cars. In contrast to the case of
the object space, where each object is represented by a
point, in the subject space the subject is represented by a
vector (a line). The nearer this vector is to a dimension,
the greater the importance given by the subject to that di-
mension, and the further away it is, the less the impor-
tance attributed to it. Indeed, it can be seen in the graph
that subject 1 is closer to dimension 1 (sporty design),
thus giving more importance to this dimension, whilst
subject 2 is closer to dimension 2 (vertical axis), indicat-
ing that it is this dimension (comfort of the cars) which
carries more weight in his judgements on car brands.

MULTIDIMENSIONAL SCALING WITH
PREFERENCE DATA
Although multidimensional scaling, in its most typical
form, starts out from a matrix of dissimilarities among
objects, some models and methods have been developed
which permit the multidimensional scaling of objects on
the basis of preference data (e.g., Bennett & Hays, 1960;
Carroll, 1980; Tucker, 1960). If we have n objects that
we wish to scale, we simply ask the subject to put them in
order of preference, assigning the number 1 to the most
preferred object, 2 to the second most preferred, and so
on until the last object, to which the number n must be
assigned. The advantage of these data is that they are
much more conveniently obtained than dissimilarity data.
The task tends to be much simpler for both subject and
researcher. The preference data are subsequently or-
dered within a rectangular matrix, with subjects in the
rows and objects in the columns. Each row is a subject,
and an element of the row represents the preference
which that subject has given to a particular object.
By way of an example, let us suppose that we were in-

terested in obtaining a perceptual map of the sports and
physical activities available to citizens in their leisure
time. To make the example manageable we can choose
8 sports or physical activities and 16 subjects, who are
asked to indicate their preferences by marking the sport
or physical activity they most prefer with a 1, their sec-
ond preference with a 2, and so on until their least pre-

MULTIDIMENSIONAL SCALING

FIGURE 3
OBJECT SPACE

FIGURE 4
SUBJECT SPACE
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ferred sport or physical activity, which they must mark
with an 8.
The sports or physical activities selected in the example

are: football, basketball, tennis, athletics, walking, swim-
ming, cycling and running.
The preferences indicated by the subjects are shown in

Table 4.
Figure 5 shows the perceptual map of the sports and

physical activities rated by the subjects in the sample. To
interpret the meaning of the dimensions we look, first of
all, at the properties of the sports or physical activities
placed at each extreme of the dimensions. They will
probably have some property reflecting a contrast that
can help us to discover the meaning of the respective di-
mension. Thus, we can observe that in dimension 1 (hori-
zontal), situated on the right are the non-competitive
physical activities (walking, swimming, running and cy-
cling), and on the left are the competitive sports (football,
athletics, tennis and basketball). Dimension 1 could be
interpreted, therefore, as the competitiveness of the sports
or physical activities. Similarly, if we look at the position-
ing of the sports and physical activities in dimension 2
(vertical axis), we can appreciate that toward the top are
the sports or physical activities of an individual nature
(athletics, running, tennis, etc.) and in the lower part are
the team sports (football, basketball), so that this second
dimension can be interpreted as the type of sport or ac-
tivity: individual versus team-based.

SOLUTION OF MULTIDIMENSIONAL SCALING
PROBLEMS WITH SPSS
Up to now, although we have referred to the process of
solving scaling problems by means of specific software,
we have not gone into much detail. We shall now illus-
trate how we solved the problem of kilometric distances
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TABLE 4
SUBJECTS’ PREFERENCES

Subject Football Basketball Tennis Athletics Walking Swimming Cycling Running

1 8 7 6 5 1 4 3 2
2 7 8 5 6 2 3 4 1
3 8 7 6 5 1 3 2 4
4 7 8 5 6 2 4 3 1
5 6 5 7 8 1 2 3 4
6 5 6 7 8 2 3 4 3
7 6 5 7 8 2 1 3 4
8 5 6 8 7 3 2 4 3
9 1 2 3 4 5 6 7 8

10 2 1 4 3 5 7 6 8
11 1 2 4 3 8 7 6 5
12 2 1 3 4 8 6 7 5
13 3 4 1 2 8 6 7 5
14 4 3 1 2 8 7 6 5
15 4 3 2 1 7 8 5 6
16 3 4 2 1 8 6 7 5

FIGURE 5
PERCEPTUAL MAP DERIVED BY PROXSCAL

FOR THE SPORTS AND PHYSICAL ACTIVITIES
BASED ON PREFERENCE DATA
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with the PROXSCAL procedure implemented in SPSS. At
the same time, in some cases, we shall indicate the differ-
ences in the decision-making between this problem and
the other three we have also solved.

Step 1. Create the data file in SPSS with the kilometric
distances between the seven Spanish cities.
It should look like the one in Figure 6. Given that the in-
put matrix is square, the rows in the matrix have the
same meaning as the columns. Row 1 is A Coruña, row
2 Barcelona, and so on until row 7, which is Valencia.
The fact that the names of the cities appear in the
columns and not in the rows is because the SPSS system

allows the columns of the data matrix to be labelled (us-
ing the Variable View tab), while it does not allow the
naming of rows.

Step 2. Select the procedure we wish to run:
Analyze/Scale/Multidimensional Scaling (PROXSCAL)

Step 3. Data Format
The PROXSCAL procedure permits two types of input data:
(a) proximity data (square matrix)
(b) profile data (rectangular matrix)
Kilometric distances, like dissimilarities between objects,

are proximity data. We therefore select the option which
indicates to the program that the data are proximities
(see Figure 7).
If we had a rectangular input matrix, such as in the

case of the preferences in the example of sports or physi-
cal activities, then we would have to select the option that
requests the program to create proximities from data.

Step 4. Number of input matrices
The PROXSCAL procedure permits one or more than one
input matrix. The number of matrices we have in the
problem is indicated in the box called Number of
Sources. Since in this case we have only one matrix, we
choose the option “One matrix source” (see Figure 7). In
the third problem we have solved here, that of the makes
of car, we chose the option “Multiple matrix sources”, as
we have two matrices, one per subject. In the input file
the matrices are situated one below the other, the same
format being maintained in all of them.

Step 5. Click on the Define button (see Figure 7)

Step 6. Select the objects we wish to scale (in this case,
cities)
For this we select the 7 cities in the box on the left in Fig-
ure 8 and move them to the box called Proximities by
clicking on the arrow between the two.

Step 7. Selection of the Model (click on the button
“Model”)
Since we have just one input matrix of proximities (dis-
tances), the procedure does not allow us to select the
scaling model (see Figure 9), which will any case be sim-
ilar to the classical model.

MULTIDIMENSIONAL SCALING

FIGURE 6
INPUT FILE FOR SPSS WITH KILOMETRIC DISTANCES

BETWEEN THE SEVEN CITIES*

*Note to Fig. 6: the decimals (all zero) are denoted by commas rather than points, since
the data was entered by the authors using the Spanish format.

FIGURE 7
SELECTION OF DATA FORMAT AND NUMBER OF INPUT MATRI-

CES IN THE PROXSCAL PROCEDURE
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If we had more than one input matrix of proximities
we would indeed be able to select the scaling model.
The most usual would be the model with replication
(called Identity model in the dialogue box) and the
INDSCAL model (called Weighted Euclidean model in
the dialogue box). In the replication model the sub-
jects are considered as replications of one another,
which means that the differences there may be be-
tween them are attributed to random factors. The IND-
SCAL model, on the other hand, permits individual
differences. In the problem of the makes of car, we
chose this model.

Step 8. More decisions about the format and nature of
the data
Up to now, the program knows that we have an input
matrix of proximities (square), but it still requires us, un-
der the “Shape” heading (see Figure 9), to specify
whether we have the information in the lower triangle,
the upper triangle, or the full matrix. Since the distance
matrix is symmetrical, we opted to have the information
only in the bottom half (lower triangular matrix). The
complete matrix option is only used when the input ma-
trix is asymmetrical. 
Multidimensional scaling programs project dissimilari-

ties as distances in space. The greater the dissimilarity
between objects, the greater will be the distance in the
multidimensional space. But the input data can be dissim-
ilarities or similarities. If they are similarities, the relation-
ship with the distances will be inverse: the greater the
similarity between two objects in the empirical world, the
smaller will be the distance between them in the space.
This is, then, an important specification that the user must
make on employing the program. In our case, in the
Proximities box, we must choose Dissimilarities. Distances
are conceived as dissimilarities.
Under the “Proximity Transformations” heading (see

Figure 9), the procedure permits the user to choose the
measurement scale for the input data. If we choose ratio
or intervals, the model will be metric, and if we choose
ordinal it will be nonmetric. In Psychology research the
“ratio” measurement level is rarely selected; the most
common are intervals and ordinal. In the problem here,
however, given that the data are distances and not sub-
jects’ judgements, we chose the highest measurement lev-
el (ratio).

In the sports problem, in which we used preference da-
ta, we specified that the measurement level was ordinal.
In this case the program permits us to make still one
more specification, under the heading “Untie tied obser-
vations”. This is a highly technical decision. If we select it,
the program will assume that the measurement process is
continuous, and if we do not, that it is discrete. The deci-
sion has repercussions only in those cases in which there
are ties. By default, the program assumes that the mea-
surement process is discrete and respects ties in the data.
If we consider that the measurement process is continu-
ous, we must tell the program to untie the tied observa-
tions. In our sports problem we tested both options and
noticed no differences in the solutions derived by the pro-
gram. In fact, this is what happens in the majority of cas-

CONSTANTINO ARCE, CRISTINA DE FRANCISCO AND IRIA ARCE

FIGURE 8
SELECTION OF OBJECTS WE WISH TO SCALE

(IN THIS CASE, CITIES)

FIGURE 9
SELECTION OF THE SCALING MODEL
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es; these decisions are important at a mathematical level,
but not at a substantive one.

Step 9. Number of dimensions
If we have a clear starting hypothesis we can select a
fixed number of dimensions, and if we do not have such
a hypothesis, the best approach is to try to obtain differ-
ent solutions and subsequently choose the solution with
the number of dimensions that is most interpretable from
a substantive point of view. In our example of the dis-
tances, the number of dimensions we chose, given that it
was a map, was two (see Figure 9).
In the example of the means of transport, as can often

occur in Psychology research of an exploratory nature,
we did not have such a clear hypothesis with regard to
the meaning of the dimensions we could obtain. Conse-
quently, we tried to obtain solutions in two, three and
four dimensions. We then attempted to seek a meaning
for them a posteriori. Having found that three were inter-
pretable, this was the solution we chose.
The interpretation of the dimensions can be made by

the researcher, attempting to analyze first of all the prop-
erties of the objects occupying the most extreme positions
in the dimension. When the procedure separates the ob-
jects considerably, it tends to be because they have some
opposing properties which, if identified, can help us to
name the dimension. We used this procedure in the
sports example. Nevertheless, this interpretation based
on the opinion of an expert (the researcher) may be
called into question by other researchers (or experts). The
ideal approach is to proceed as we did in the means of
transport problem, where in addition to asking the sub-
jects for dissimilarity judgements, we asked them to rate
each type of transport on a series of bipolar scales that
represented hypothetical properties of the means of
transport. Subsequently, using statistical methods of cor-
relation and regression, it was possible to offer evidence
about the true meaning of each of the dimensions re-
tained.

Step 10. Restrictions and Options
Both the Restrictions and the Options buttons (see Figure
8) permit the user to make decisions at a highly ad-
vanced level. In practice, it is customary to take the de-
fault options implemented by the procedure. In
Restrictions, by default, the program assumes that it must

estimate all the coordinates of the objects (without restric-
tions). Sometimes, exceptionally, the coordinates are
known, and all that is sought is to project new objects
onto an already defined space. In such a case it would
be necessary to provide the program with the coordi-
nates, which it would read from a file we indicate to it.
Likewise, in Options, by default, the program takes a

particular initial configuration (simplex), which it permits
us to change for other alternatives (e.g., Torgerson). It al-
so allows us to change the criteria for attaining conver-
gence and the number of iterations made by the
algorithm. Rarely can better results be obtained if the
program’s default options are changed.

Step 11. Decision-making about output
The Plots and Output buttons of the program (see Figure
8) permit users to choose what they want to appear in
the output. The possibilities range from a very simple out-
put, with the substantial elements, to a highly elaborate
output with all types of technical detail. It is advisable,
initially, to obtain a simple output, and subsequently, if
necessary, to obtain new outputs with more informative
elements. By default, in Plots, the program offers us the
most relevant plot, which is the object space (common
space). In addition, we could request other plots that per-
mit us to observe the model’s degree of fit. As regards
Output, the program provides us by default with the co-
ordinates of the objects (in this case, cities) and the mod-
el’s goodness-of-fit indices, as can be seen in Table 2.

COMPUTER PROGRAMS FOR MULTIDIMENSIONAL
SCALING
There is a long list of computer programs for the solution
of multidimensional scaling problems. We solved all the
problems mentioned here using the PROXSCAL proce-
dure, implemented in SPSS, but the same statistical pack-
age offers another procedure, called ALSCAL, which also
permits the solution of multiple multidimensional scaling
problems. In order to accede to this procedure the user
must follow the sequence Analyze/Scales/Multidimen-
sional scaling (ALSCAL). All the problems we have dealt
with here could equally have been solved with ALSCAL.
In Table 5 we provide a short list of the computer pro-

grams currently on the market. In addition to those al-
ready mentioned, PROXSCAL and ALSCAL,
multidimensional scaling problems can be solved with
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other programs, such as GGVIS, PERMAP, MULTISCALE
or NewMDSX. GGVIS and PERMAP share the property
of being interactive, and are available free of charge via
Internet. MULTISCALE also has the advantage of free
download from the Web, but it is difficult to use. Its au-
thor, Ramsay, is a highly prestigious figure in the history
of multidimensional scaling. Finally, NewMDSX is, in re-
ality, a program package that permits the solution of
multidimensional scaling problems and of related types
of problem.
If readers would like further information on computer

programs and, more generally, on the history, models
and methods of multidimensional scaling, as well as on
its multiple application possibilities in Psychology and re-
lated matters, they might wish to consult the book by
Borg and Groenen (2005) – the most recent manual on
multidimensional scaling – or the works of Kruskal and
Wish (1978), Arabie, Carroll and DeSarbo (1987),
Green, Carmone and Smith (1989), or Arce (1993,
1994). For examples of applications, see Wish, Deutsch
and Kaplan (1976) or Sabucedo and Arce (1990).
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